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ABSTRACT

Despiteits long history, the finite element method continues to be the predominant
strategy employed by engineers to conduct structural analysis. A reliable method is needed for
analyzing structures made of reinforced concrete, a complex but common ingredient in many
bridgesin Virginia. Asan effective aternative to extensive experimentation, this study was
implemented to evaluate the plausibility of finite element analysis of reinforced-concrete bridge
decks.

Analytical evaluations were performed with the commercial, genera -purpose finite
element code ABAQUS, which can effectively depict the nonlinear behavior of concrete. It also
has the unique capability of describing the behavior of reinforcing bars independently of the
concrete material. Three-dimensional finite element models were developed to determine the
overall structural response of several reinforced-concrete systems. Biaxia strain distribution
through the element thickness, longitudinal normal girder strains, and displacements were
predicted with reasonable accuracy. The accuracy of the model was verified with hand
calculations or response data acquired from laboratory testing.

The validated finite element models of the structural systems were used to evaluate the
Route 621 Bridge over the Willis River, specifically, the composite action and global response of
the reinforced-concrete deck and stedl girders. Subsequent phases of this project include
parameterization studies of this and future reinforced-concrete bridge models.
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INTRODUCTION

Many bridges built in the past 50 years are composite structures with decks constructed of
reinforced concrete and supported by longitudinal steel girders. Because of their normal
deterioration, the introduction of new safety standards, and the increasing traffic volume and
loads, a high percentage of the older bridges require rehabilitation or expansion. Often, the
choice between constructing a new bridge and rehabilitating the existing one must be made. As
the recent issue of replacing the Woodrow Wilson Bridge over the Potomac River exemplifies,
this choice can be a much debated one (Reed, 1996).

An essential factor in making a sound decision is knowledge of the strength of the bridge
initsexisting form. Unfortunately, the inelastic response, load distribution characteristics, and
ultimate strength of multigirder bridges cannot be realistically assessed by use of simplified
procedures currently used in design and evaluation. Prediction of this behavior ultimately
requires extensive experimentation or advanced analytical techniques. In many cases, analytical
methods are more economical and expedient than laboratory or field testing, and a number of
researchers have extolled the potential of using finite element analysis to predict bridge response
with reinforced-concrete deck compositions (Ashour & Morley, 1993; Huria, 1993; Mabsout,
1997; Razagpur, 1990).

The development of commercial finite el ement codes, which provide a unique program
interface with which to analyze a system, has helped practitioners attain a better appreciation for
both the usefulness and limitations of finite element modeling of reinforced concrete (Darwin,
1993). Evaluation of specific applications, such as reinforced-concrete bridge decks, can be



handled using these codes. However, to identify possible modeling discrepancies and errors and
to verify the accuracy of these computer codes, results from nonlinear finite element analyses
need to be compared with those from actual experiments. This may be achieved only if the
analysis can account realistically for the material and geometric properties of the various
components of a structure and the interaction among them (Chowdhury, 1995).

A definitive technique for analyzing reinforced concrete, one of the most used composite
materials in construction, has been difficult to develop. Researchers acknowledge that the finite
element method works very well for many structural materials such as steel and aluminum,
which have well-defined constitutive properties. When the constitutive behavior is not so
straightforward, the task is more difficult. For materials such as concrete, in which discrete
cracking occurs, thisis certainly the case. The complexity of reinforced concrete is a major
factor that limits the capabilities of the finite element method (Chen et al., 1993).

Until recently, only linear models were used to analyze structural systems composed of
complex materials such as reinforced concrete. More recently, researchers have employed many
variations of the constitutive representations of the concrete component, the reinforcement, and
the nature of their interaction. A comprehensive summary by Darwin of 24 finite el ement model
studies of reinforced concrete from 1985 to 1991 illustrates the wide range of options available to
perform an accurate analysis (Darwin, 1993). Some of the categories compared are indicated in
Table 1, aong with the frequency with which each option was used in the studies. This
illustrates that a primary technique for analyzing general reinforced-concrete structures has yet to
be agreed upon.

Table 1. Research on Reinforced-Concrete Finite Element Modeling

Subject Options % of References

2-dimensional 88

Type of model 3-dimensional 12
Linear elastic 8

Concrete compression | Nonlinear elastic 80

Elastoplastic 12

. e Incorporated 67

Tension stiffening Not used 23

Distributed 58

Stedl representation Discrete 37
Embedded 5

Fixed orthogonal 29

Crack representation Fixed non-orthogonal 37

Rotating 34

. Perfect 63

Bond representation Bond Siip 37




Cracking of the concrete and yielding of the reinforcement dominate the failure behavior
of most reinforced-concrete systems. Cracking is regarded as an extremely important
phenomenon that can be studied exclusively (Alfaiate et a., 1997; DeBorst, 1997; Loo & Guan,
1997). Ngo and Scordelis (1967) presented the first finite element analysis of reinforced
concrete that included the effect of cracking. Studies that followed attempted to represent
discrete cracks that occur during a load cycle, but the need to change the topology of the finite
element mesh greatly hindered the speed of the process. More recently, researchers have
developed models that automatically generate cracking without redefining the element mesh.
These models depict the effect of many small cracksthat are “smeared” acrossthe element ina
direction perpendicular to the principal tensile stress direction (Darwin, 1993).

All studies of reinforced concrete employ one of three possible strategies for accurately
representing the reinforcing steel: smeared, embedded, or discrete. This aspect of modeling has
also been the subject of independent investigations as to the advantages of one over the other
(Barzegar, 1994; Barzegar & Maddipudi, 1997; Jiang & Mirza, 1997; Kwak & Filippou, 1997,
Ramaswamy et al., 1995). Table 1 shows that steel reinforcement was most often represented by
adistributed layer using a uniaxial constitutive relationship. Particular interaction characteristics
such as the ability of steel to take dowel forces are, therefore, not modeled by this uniaxial
material. Along with bond quality and aggregate size, these effects are instead taken into account
when the overall interaction behavior of reinforced concrete is described (Hibbitt, Karlsson &
Sorensen, Inc. [HKS], 1998a).

The ability of the concrete between cracks to carry stress and provide stiffness in tandem
with the reinforcing steel, known as tension stiffening, was first introduced by Scanlon and
Murray. They developed models that simulated the loss of stiffness by altering the tensile stress-
strain relationship (Scanlon & Murray, 1974; Gilbert & Warner, 1978). Although these early
models overestimated the initial cracking load, they produced the closest match with
experimental data. The recent incorporation of this concept into commercia finite element codes
is based on Hilleborg's 1976 study that combined fracture mechanics of concrete with finite
elements and the ability of reinforced concrete to carry stress after cracking (cited in HKS,
1998a).

In addition to studies examining material behavior, several studies have been devoted to
assessing the load-carrying capacity and other characteristics of bridges (Azizinamini, 1994;
Huria, 1993; Sen et al., 1994; Shahrooz, 1994; Sharooz & Ho, 1998). These investigations
provide excellent information because their analytic solutions attempt to explain the behavior
that occursin thefield, even at ultimate load.

PURPOSE AND SCOPE

The primary objective of this study was to establish and demonstrate a convenient,
reliable, and accurate methodology for analyzing reinforced-concrete structures with particular
emphasis on reinforced-concrete bridge decks. A secondary objective was to develop a



capability for predicting stress and strain distribution through the thickness of reinforced-
concrete bridge decks. Such information is not easily obtained through experimentation.

A specific objective of the analytical evaluation included the development of afinite
element model that could correctly represent global bridge behavior and accurately predict
strains, stresses, and displacementsin the deck. Dynamic, fatigue, and thermal analyses,
although certainly worth investigating in future project phases, were not included in this study.

METHODOLOGY

ABAQUS Version 5.7, ageneral purpose finite element code developed by HKS, was
selected as the basic platform for this study. ABAQUS has a unique procedure for attaining
solutions through the entire behavioral regime of reinforced concrete. All subsequent finite
element models were developed using ABAQUS.

The next step was to demonstrate how reinforced concrete is modeled within ABAQUS
and to validate the results predicted by the ABAQUS models by comparing them with relevant
experimental data and accepted design calculations. Examples of reinforced-concrete elements
for which experimental data were available, from either previous analyses or laboratory or field
tests, were selected. These problems included a simple reinforced-concrete beam, areinforced-
concrete slab, and a composite steel girder with a partial concrete slab. The effectiveness of
ABAQUS in analyzing reinforced-concrete beams and slabs also established a basis for itsuse in
modeling a compl ete bridge deck.

A complete analysis using ABAQUS requires a description of the material, the model
configuration, boundary conditions, and loading. For service-load simulations, at least two
material constants are required to characterize the linear elastic behavior of the material:

Y oung's modulus (E) and Poisson’sratio (v). For nonlinear analysis, the steel and concrete
uniaxial behaviors beyond the elastic range must be defined to ssimulate their behavior at higher
stresses. The minimum input parameters required to define the concrete material are the uniaxial
compression curve, the ratio of biaxial and uniaxial compressive strength, and the uniaxial tensile
strength. ABAQUS s equipped with default values if necessary, which are indicative of typical
concrete performance (HKS, 1998b).

Boundary conditions that represent structural supports specify values of displacement and
rotation variables at appropriate nodes. To facilitate a more economical solution, finite element
meshes may also use symmetry, which can be implemented with symmetric boundary conditions.
Linear springs may also be considered supports in studies where a component rests on bearing
pads. ABAQUS allows the user to define axial spring elements, connected to a node and support
that have the appropriate stiffness coefficients.

The reinforced-concrete dabs investigated were modeled with quadrilateral shell
elements. ABAQUS can provide response information at the nodes and element stresses at



designated integration points within the element. Stresses at various points through the
thickness of the element can also be provided, which is particularly important for this study.
Beam elements were used in this study to simulate a typical reinforced-concrete beam and W-
shape girders. The user can choose the type of beam element and select the shape of the cross
section.

In the case of concrete modeling, ABAQUS employs a plasticity-based constitutive
model that simulates cracking, tension stiffening, shear capacity of cracked concrete, and
crushing in compression. All types of elements may be used to model concretein ABAQUS,
including the beam and shell elements employed in thisstudy. Figure 1 shows the general type
of behavior exhibited by reinforced concrete in tension. The user defines this curve in ABAQUS
to simulate the tension stiffening behavior of the concrete elements.

The reinforcing steel is modeled as a one-dimensional element with only uniaxial
stiffness properties oriented along its direction in the parent beam or shell element. Itistypically
defined as individual layers rather than single bars and may be defined singly or embedded in the
oriented surface of the concrete. Either way, the definition of the reinforcement’ s geometry,
orientation, and material propertiesisindependent of the definition of the underlying concrete
element.
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Figurel. Tension Stiffening M odel for Concrete

VERIFICATION STUDIESAND RESULTS
Reinfor ced-Concrete Beam
The finite element model of areinforced-concrete beam, simply supported, and subjected
to auniformly distributed load, was initially investigated. The intention of this example was to

do the following:

» anayze standard beam elements using plain concrete theory



» combine these elements with one-dimensional strain theory elements for reinforcing
steel

» compare finite element results with hand calculations.

The fact that cracking is an important aspect of the general behavior predicates investigating the
concept of tension stiffening. Experimenting with this parameter is an important part of model
verification.

The beam selected for analysis had a span of 6.1 m (20 ft), awidth of 0.25 m (10 in), and
adepth of 0.64 m (25in). The concrete had a strength f' of 41.4 MPa (6,000 psi) and a modulus
of 30.5 GPa (4,420 ksi). Thereinforcing steel had a modulus of 200 GPa (29,000 ksi), ayield
stress of 414 MPa (60 ksi), and an area of 1530 mm? (2.37 in?). The loading was a uniform load
of 62.2 kN/m (4,260 Ib/ft), which is close to the ultimate |oad of the beam. Thisload was
applied incrementally to facilitate solution convergence. Maximum stresses attributable to the
applied load were calculated in accordance with the code of the American Concrete Institute. A
finite element model of the beam, consisting of 20 elements, was also developed, and stresses
and deflections were determined. The appropriate properties of concrete and steel, including
tension stiffening, were included in the model input.

Figure 2 shows the deflection of the entire span, as calculated by the model and by
traditional hand calculations. Figure 3 shows the compressive stress in the top fiber of the beam
as calculated by the model and by hand. As expected, the maximum stressis at the midspan, and
the finite element model shows excellent correlation with the hand calculation. Figure 4 shows
the stress in the reinforcing steel. The finite element model again matches the maximum stress at
midspan calculated by hand. However, the curve is not a smooth, nonlinear curve such as the
one predicted by the hand calculations. Instead, the steel carries very little stress in the elements
that extend approximately 1 m (3.3 ft) out from the support. As may be seen from the figure, the
reinforcement stress does not conform to the hand calculation curve in the vicinity of the support.
This difference is likely attributable to the definition of tension stiffening in the model that could
predict more severe cracking near the ends of the model.

Distance From Left Support (m)

Deflection (mm)
o ©

B USRS
-18

—e— FEM Calculation —— Hand Calculation

Figure 2. Deflection Across Span



Distance From Left Support (m)

0 0 0.5 1.0 1.5 2.0 25 3.0 3.5
~ .
o
2
()]
n
Q
n
Hand Calculation FEM Prediction
Figure3. Compressive Stressin Top Fiber of Beam
420
7S 151 i e et oo mch S
o 280 f - _*f'__/__‘ ________________________________
=3
@ 23 [0 e e~ e
O 140 -7 5P T TSt TTT oo oSsooosssoossoooosooosssoossoooes
w VI i i
0

0 0.5 1.0 1.5 2.0 25 3.0 3.5
Distance From Left Support (m)

— Hand Calculation FEM Prediction

Figure 4. Sted Reinforcement Stress Along Beam

Reinforced-Concrete Slab

Further verification of the validity of finite element models of reinforced-concrete
components may be demonstrated by comparing the predicted response of the model with
experimental results obtained from laboratory tests of atwo-way reinforced, simply supported
concrete slab (Graddy et a., 1995). Load deflection behavior, stress distribution, and crack
initiation, three important results obtained from the model, were compared to values for similar
behavior obtained for the experimental specimen. The success of this analytical model will serve
as aprecursor to subsequent research of bridge deck analysis.

The reinforced-concrete slab tested had alength of 2.13 m (7 ft), awidth of 1.83 m (6 ft),
and athickness of 191 mm (7.5in). It was reinforced in both the top and bottom of the slab. The
properties of the concrete and reinforcing steel were the same as those used in the previous
simple beam example. The cast-in-place test slab was simply supported at its edges on neoprene
bearing strips represented in the finite element model by linear springs having equivalent
stiffness properties. Strain gages were attached to both the top and bottom reinforcement in the
longitudinal and transverse directions. Concrete strain gages were also attached to the top and
bottom surfaces of the dlab at the same locations. Deflections were measured at the edges, just
inboard of the supports, and at the center. The net deflection at the center was obtained by
averaging the edge displacements and subtracting it from the measured center deflection.



Loading was applied monotonically over an area 406 by 610 mm (16 by 24 in) in the center of
the dlab. Additional details of the reinforcement, instrumentation, and loading may found in
Graddy et a. (1995).

Model Characteristics

Because the dab had two axes of symmetry, it was possible to represent the full slab by
modeling only one fourth of the dab. The model contained 432 elements, 378 of which were
used to represent the slab and 54 the reinforcement. The shell elements representing the slab
were 50.8 by 50.8 mm (2 by 2 in) quadrilateral shell elements with four nodes and six degrees of
freedom per node. Thisresulted in a slab model with 418 nodes and 2,508 degrees of freedom.
A sketch of the finite element model of one fourth of the slab is shown in Figure 5. The element
numbers are shown, and the locations of the longitudinal and transverse strain gages in the test
dlab correspond to the location of element 132.

Tabular data were used to define the stress-strain behavior of plain concrete in uniaxial
compression beyond the elastic range. The first value of compressive stress, usually taken as
0.45f'¢, which initiates inelastic behavior, is paired with aplastic strain of zero. Severa values of
stress were extrapolated from atypical stress-strain curve for 41.4 MPa (6,000 psi) concrete.
These engineering strain values were converted to plastic strain through subtracting each from
the engineering strain at the initiation of inelastic behavior.
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Figure5. Plan View of Model of Reinforced-Concrete Slab



The load was applied in small increments to overcome difficulties associated with
obtaining solutions during unstable response, such as when the concrete cracks. Theinitia load
magnitude was 5% of the maximum applied load of 489.3 kN (110 kips), and the load was then
incremented automatically.

The concrete-reinforcement interaction and the energy release at cracking were
represented in the model by the use of tension stiffening. In this example, by using severad
different values for the strain beyond failure, different values of tension stiffening could be
included. Thisillustrates the effect of the parameter effect on the ability of the model to reach
convergence and its importance in calibrating the model to avalid experiment.

Deflections were obtained from the node representing the center of the slab. The concrete
and steel stresses were obtained at |ocations corresponding to locations of the strain gages.

Results

The plotsin Figure 6 illustrate the effect of tension stiffening on the load deflection
response. The values of tension stiffening in the plot ranged from 1.5 x 10°t0 3.0 x 103, The
model with the lowest value of tension stiffening failed to converge to a solution beyond aload
of 355.8 kN (80 kips). Specifying this unreasonably low value causes local cracking failurein
the concrete, which results in unstable behavior of the overall response. Increasing the tension
stiffening to 3.0 x 10 makesiit easier to obtain numerical solutions without an inordinate
amount of computation time or loss in accuracy.

Although the measured and predicted displacement behaviors were quite similar, there
were discrepancies that were most likely attributable to the test setup. Graddy et a. (1995)
calculated a net-center deflection by averaging both edge deflections and subtracting the result
from the center deflection. However, problemsin the test setup or with warping affect the data
when the dab isinitialy loaded. Data provided by the researchers, and subsequently used for
this comparison, showed a considerable difference in the two edge deflections. The data
indicated that edge deflections at loads below 89 kN (20 kips) were actually greater than
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Figure 6. Effect of Tension Stiffening on Response of M odel



center deflection. Neglecting the effects of the edge deflection improves the model’ s match with
the present finite element model.

The study also reported that flexural cracking was first observed at aload of about 80 kN
(18 kips). These cracks propagated laterally in the X and Y directions as the applied load
increased, with wider cracks occurring parallel with the X direction. The finite element model
indicated initial cracking at 80 kKN (18 kips) aswell.

Figure 7 shows the analytical predictions of concrete stress at the top and bottom surfaces
of the slab in both the longitudinal and transverse directions at |ocations corresponding to the
location of the strain gages. These analytical results predicted a maximum longitudinal
compressive stress in the top approaching 27.6 MPa (4 ksi). The maximum measured
compressive stress was reported to be 28.9 MPa (4.2 ksi). However, the maximum transverse
compressive stress predicted by the model was approximately 13.8 MPa (2 ksi), and the
measured maximum transverse compressive stress was approximately 20.3 MPa (2.9 ksi).

Figure 8 shows the axial stress in the longitudinal reinforcing steel as predicted by the
model at alocation corresponding to the strain gage locationsin the slab. The top layer of steel
has predominantly compressive stresses, whereas the bottom layer carries tensile stresses. The
tensile stress increases rapidly in the bottom layer above approximately 200 kN (45 kips),
indicating that the steel beginsto carry a higher percentage of stress once the concrete cracks. As
the load increases, there is agradual movement of the element neutral axis away from the bottom
layer of steel and the axial stress becomesincreasingly tensile.

These finite element results differ markedly from the experimental results reported in the
study by Graddy et a. (1995). Not only does the bottom layer of steel have a much higher state
of tensile stress, but the top layers also have tensile stress. This discrepancy is likely attributable
to the shifting of the neutral axis, which isafunction of cracking in the concrete.

Load (kN)
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Figure7. Analytical Stressesfor Top and Bottom Concrete Surfaces
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i1S2.29 m (7.5 ft); thus, the effective flange width is the smaller of one eighth of the span or one
half the girder spacing. The dimensions of the model are given in the figure. The steel girder has
ayield stress of 248 MPa (36 ksi), and the ultimate strength of the concrete is 27.6 MPa (4 ksi).
The beam is subjected to a uniformly distributed static load of 0.012 MPa (1.74 psi) applied to
the surface of the slab.

The location of the composite neutral axis was calculated to be 78.5 cm (30.9in)
measured from the bottom flange of the girder, which is 2.62 cm (1.03 in) into the bottom face of
the concrete slab. The moment of inertia of the transformed section was determined to be 635 x
10° cm* (15.26 x 10% in?), and the maximum moment attributable to the uniform service load was
calculated to be 502.71 kN-m (737.4 ft-1b).

Model Characteristics

The original finite element mesh consisted of 110 elements, 22 rows of 4 concrete deck
elements laid on top of 22 girder elements. Theinitial dimensions of the 247.7-mm-thick (9.75
in) deck elements were 571.5 x 571.5 mm (22.5 x 22.5in). The shell elements ($4R) incorporate
thick shell theory for this particular model. The three-dimensional, first order, B310S beam
element represented the girder elements. The nodes defining the two ends of the beam were
simply supported.

Element stresses and strains were requested from the top flange, middie web, and bottom
flange of the girder element. This output was calculated at the element integration point, which
isat the midpoint for this two-node, linear interpolation element. Deck and girder connectivity
was achieved in the model by employing multipoint constraints.

Results

Results from the finite element models were used to evaluate some of the important
characteristics of bridge behavior and compare them with those calculated by hand. These
characteristics included:

* biaxia stress and strain distribution in the deck

» composite behavior of the deck and girder

» |oad transfer attributable to longitudinal and transverse bending.

The maximum deflection at midspan attributable to the applied load was calculated by
hand to be 6.12 mm (0.24 in); the finite element model predicted a maximum deflection of 6.54
mm (0.26 in). Stresses and strains were calculated at six locations, threein the slab and threein

the girder. The three pointsin the concrete slab are the top and bottom surfaces and at its local
neutral axis. The three pointsin the girder are the top and bottom flange (intersecting with the

12



web) and at its local neutral axis. The resultsfor the concrete deck are listed in Table 2, and for
the steel girder in Table 3. The finite element model’ s calculation of longitudinal stress and
strain matched very well with the results calculated by hand.

When the ratio of the stressto the strain at a particular point on the slab was calculated in
the finite element model, it differed by about 20% from the ratio calculated by hand. Asan
example, the ratio between the stress and strain at the bottom of the concrete was only about 3.5,
whereas the ratio of the same values in the hand solution was 4.4. Further examination indicated
that transverse bending in the slab-girder component, as predicted by the finite element results,
contributed to this difference. For example, in the finite element model, there was a state of two-
dimensional stress, whereas typical design calculations incorporate equations for only one-
dimensional stresses.

The results showed that most of the concrete carries the compressive stress, whereas the

entire girder carries the tensile stress with the transition point located at the composite neutral
axis, just above the bottom of the concrete dlab.

Table 2. Composite Beam Stressand Strain in the Concrete

. FEM
Par ameter L ocation Hand Longitudinal Transverse
Top -2.661 -2.654 0.468
Stress (MPa) Middle -1.173 -1.168 0.025
Bottom 0.314 0.318 -0.417
Top -87.66 -89.72 28.52
Strain (x10°°) Middle -38.65 -38.60 6.60
Bottom 10.35 12.52 -15.32
Deflection (cm) Midspan 0.612 0.654

Table 3. Composite Beam Stressand Strain in the Girder

FEM
Par ameter Location Hand L ongitudinal
Top 2.072 2.652

Stress (MPa) Middle 32120 32.023
Bottom 62.169 61.396
Top 10.35 13.254
Strain (x 10°)  Middle 160.5 160.04
Bottom 310.7 306.83

13



FINITE ELEMENT MODEL OF ACTUAL BRIDGE

The researchers developed a complete model of atypical steel girder bridge with a
reinforced-concrete deck by employing al of the finite element strategies discussed in earlier
sections. The features involved included the following:

» concrete el ements

» reinforcing steel

e composite construction

e capability to model deck cracking

e capability to model nonlinear behavior

e capability to conduct static and dynamic analysis.

Despite the fact that experimental data were not yet available for comparison, it was useful to
complete amodel and conduct a detailed analysis for such a configuration.

Description of Bridge

The structure selected for this demonstration was a three-span continuous bridge
carrying Route 621 over the Willis River in Buckingham County, Virginia. Each span hasa
length of 12.2 m (40 ft) and awidth of 7.98 m (26.2 ft). The doubly reinforced concrete deck is
supported by four steel girders with aspacing of 2.29 m (7.5 ft). For convenience, the girders
were labeled A through D. Figure 10 shows a plan view of the deck, which details general
dimensions and the spacing of the girders. The spans from right to left are labeled A through C.
The cast-in-place deck, made of Type A4 (27.6 MPaor 4 ksi) concrete, had longitudinal and
transverse reinforcement in both the top and bottom.

Figure 11 shows the cross section of the bridge, including the girders, diaphragms, and
parapets. Therolled girders have a depth of 758 mm (29.8 in), aweb thickness of 14 mm (0.55
in), aflange thickness of 19 mm (0.75 in), and a flange width of 266 mm (10.5in). Thetop
flanges of the girders are connected to the reinforced-concrete deck with shear studs.
Diaphragms, consisting of channel sections 380 mm (15 in) deep, connect between the girdersin
each span. Diaphragms are located at midspan and adjacent to each support. Parapets, located
on either side of the roadway, are constructed of cast-in-place concrete and are fastened to the
reinforced concrete with steel bars encased in a stainless steel tube.
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Model Characteristics

Several assumptions were made to simplify model development without any lossin the
accuracy of the representation. The 1.4% deck gradient was neglected, making the mesh
representing the deck parallel with the X-Y plane. An average deck thickness of 248 mm (9.75
in) was used, and the steel placement through the deck remained constant. The 38-mm (1.5-in)
concrete haunch that protects the shear connectors, and separates the girders from the bottom
surface of the deck, was not included in the model. The bolted connection between the
diaphragms and the girders essentially creates a fixed connection and may be modeled as a node-
to-node connection. External components of the bridge that are mechanically connected to the
deck are attached in the finite element model by using multipoint constraints.

With these assumptions in mind, the components of the bridge were represented by the
following finite element strategies:
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reinforced-concrete deck . shell e ements and rebar elements

stedl girders - beam elements

diaphragms - truss elements

parapets - beam elements

interaction - simple supports or multipoint constraints
static load - surface pressure |oads

The complete model had 5,211 elements, separated into 4,320 shell elements, 576 beam elements
constituting the girders, 288 beam elements forming the parapets, and 27 truss elements. This
resulted in a system with 40,000 total degrees of freedom.

Deck elements were modeled with AR shell elements. The geometry of the deck was
such that the element dimensions were approximately 290 mm (11.4 in) in the transverse
direction and 254 mm (10 in) in the longitudinal direction. The transverse dimension was varied
dlightly to ensure that nodes in the deck mesh were aligned with the girder nodes. With atotal
bridge length of 36.58 m (120 ft) and atotal width of 7.98 m (26.2 ft), the mesh representing the
deck consisted of 28 rows of 144 elements.

The steel girders, defined as beam elements, were positioned on a separate plane of nodes
parallel with the deck. The girder nodes were defined by copying anodal layer of the deck to a
new plane. This allowed the coordinates of girder nodes to be in line with the deck’ s nodal layer.
This sort of alignment, which occurred for all four pairs of girder and deck nodes, was necessary
to provide the proper connectivity between the two layers of elements. Each girder was
represented by 144 beam elements, each 254 mm (10 in) in length. Truss elements were used in
the finite element model to represent diaphragms, and the parapets were defined in the bridge
models as general beam elements. The area, moments of inertia, and torsional rigidity were
calculated from geometric quantities of the parapets. The parapet nodes were 295.1 mm (11.6 in)
above the deck’ s nodal layer corresponding to the location of the centroid of the parapet cross
section.

Loading

The applied loading consisted of pressure loads applied to deck elements. The load
magnitudes corresponded to the tire loads of a standard AASHTO-type, multiaxle truck, and the
load location corresponded to the tire footprints. Based on truck weights used in an earlier field
test (Misch, 1998), the researchers assumed that the total truck weight was 247.3 kKN (55.6 kips).
The total load was distributed such that the truck’ s front axle carried 25% of the gross weight and
the two rear axles carried the remaining 75% of the weight. The appropriate dimensions and
location of each tire patch and the total gross weight applied areillustrated in Figure 12. The
actual location of the load on the bridge was applied to an arbitrarily chosen region of Span A.
Figure 13 illustrates the model of the complete span, which includes the deck, parapets, girders,
and diaphragms.
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Results

The following data are applicable only to the first span, Span A, which extends from the
abutment to the first pier. Longitudinal and transverse stresses in the girder and deck are
presented at particular locations. The data show the global behavior of the bridge model,
particularly the distribution of compressive and tensile stresses in the deck.

Figure 14 shows the deflection pattern in Span A as aresult of the load applied to the
bridge model. As expected, the area of the bridge under the rear axles of the truck load sustained
the maximum deflections. This area supported 75% of the grossload. The maximum deflection
was approximately 0.9 mm (0.04 in) at girder node 2723. With referenceto Figure 12, this
location is approximately halfway between the front and rear axles and is located at Girder C.

Figures 15 and 16 show contours of the transverse strain distribution in the reinforced-
concrete deck. In Figure 15, the transverse compressive strain in the top fiber of the deck is most
evident directly under the rear-axle load patch. The plot of transverse strain in the bottom fiber
of the slab, shown in Figure 16, indicates the tensile behavior of the deck attributable to the load.
The section of the deck directly over the girder, between the rear axle loads, has atensile strain of
about 3 microstrain, whereas the strain in the bottom part of the deck directly under theload is
approximately 30 microstrain.

Figures 17 and 18, respectively, show the compressive and tensile strain distributions
across the transverse strip.  Finally, a plot of the longitudinal tensile strainin Girder C, along a
line extending from the abutment to approximately the midpoint of the bridge, is shown in Figure
19. Asevident from the figure, the portion of Girder C directly underneath the rear axle load
patch has the highest tensile strain. The level of strain then decreases until it becomes
compressive over the pier support and then becomes negligiblein SpansB and C. This
observation confirms the expected response of the girder in the vicinity of the load.

3
DISPLACEMENT MAGNIFICATION FACTOR = 4.000E+03
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1
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Figure 14. Deflection of Span A Attributableto Static Truck Load
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CONCLUSIONS
* ABAQUS has many modeling characteristics with which to model reinforced concrete.
* ABAQUS canto do the following:

model concrete and steel with beam and shell elements

simulate their interaction

apply loads

calculate accurate results and predict behavior not generally obtained through
experimentation.

OoOoono

» Theaccuracy of the model was validated, and the limitations of matching finite element
models to experimental tests held under conditions that are less than ideal was illustrated.

* Thedevelopment of afinite element model of an entire bridge illustrates not only the
capability of ABAQUS to represent the behavior of arealistic structure but also the specific
capability of the model to predict deflections, strains, and stresses while minimizing
unnecessary complexities.

RECOMMENDATION

VDOT should consider implementing contemporary analysis tools such as ABAQUS.
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